
1

The Effect and Technique of
System Coherence in ARM

Multicore Technology

John Goodacre

Senior Program Manager

ARM Processor Division

Cambridge, UK

2

Dual-instruction
Decode stage

Cortex™-A9 Microarchitecture (single core variant)

Instruction prefetch stage

Out of order
multi-issue with

speculation

3+1 Dispatch
stage

Dual-instruction
Decode stage

Register
Rename stage

In
st

ru
ct

io
n

qu
eu

e
an

d
D

is
pa

tc
h

ALU-1
ALU/MUL

ALU-1
ALU

OoO

Write
back
stage

Address

Program
Trace
Unit

µTLB

Data Cache

MMU

Load-Store Unit

quad-slot with forwarding

Store Buffer

In
st

ru
ct

io
n

qu
eu

e

Branch
Monitor

P
re

di
ct

io
n

qu
eu

e

Instruction

cache

Branch PredictionFast-loop
mode

Auto-prefetcher

Global History Buffer

BR-Target Addr Cache

Return Stack

CoreSight
Debug Access Port

Profiling Monitor Block

FPU/NEONFPU/NEON

Bus Interface Unit (BIU)
Master interface Secondary master (with filtering)

L2 Cache Control

ECC RAMs

AMBA 3 AXI 64bit

Coresight /
JTAG
Debug

Coresight
TracePL310

L2 Cache
Controller

IRQ/FIQ

PL390

Interrupt
Controller

Cortex A9
Single core
Processor

…

Virtual to
physical

register pool

Memory System

3

Cortex-A9 MPCore™ Processor Structure

Tightly coupled multiple
core configuration
enables range of AMP
and SMP configurations,
configurable at boot time

Modified MESI coherency
protocol for cache-to-
cache transfers and direct
data intervention

Accelerator coherence
port (ACP) enables
acceleration engines and
peripherals to share multi-
core optimized coherency
design

Event bus across cores
for fine grained
communication within
coherency domain

L2 Cache Controller (PL310)

Cache-2-Cache
Transfers

Snoop

Filtering

Generalized
Interrupt Control
and Distribution

Snoop Control Unit (SCU)

Timers

Advanced Bus

Interface Unit
Optional 2nd I/F

with Address Filtering

Primary AMBA 3

64bit Interface

Accelerator
Coherence

Port

FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F

FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F

FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F

FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F

ARM Coresight Multcore Debug and Trace Architecture

4

Addressing system performance

System performance is not only defined by the processor
Speed/width and latency of DRAM and processor system interface

Connectivity and efficiency interacting with system components

Offchip Bridged components

On chip system components

Tightly coupled components

Important to consider system
design, especially interaction
with other system components
such as DMA and accelerators

Interconnect

Processor

DRAM

BridgeAccelerator

Accelerator

Process
System Bus

DRAM
Interface

5

Traditional Accelerator SoC Integration

Analysis of traditional SoC accelerator SoC integration
Inefficient usage of CPU cache

Significant performance and power implications from data movement

High signalling latencies due to mailbox access and interrupt latencies

GPIO

Interconnect

AcceleratorCPU

Memory

1

2

3

4

7

6

8
5

1 CPU flushes data from cache to
make visible to accelerator.

Writes to mailbox to indicate
availability of data

Interrupt serviced by accelerator

Read data from memory

Writes result back to memory

Notifies availability of result data

CPU services interrupt

Reads accelerator result data

2

3

4

5

6

7

8

6

Enhanced Accelerator SoC Integration

Cortex-A9 MPCore (1-4 CPUs)

MPCore Technology / SCU

Memory

CPU

D$ I$

ARM MPCore: Accelerator Coherence Port (ACP)
Simplified software and reduces cache flush overheads
Accelerators gain access to CPU cache hierarchy, increasing system performance
and reducing overall power
Uses AMBA® 3 AXI™ technology for compatibility with standard un-cached
peripherals and accelerators

CPU

D$ I$

CPU

D$ I$

A
C

P

Events

L2 Cache
shared, with per-master lockdown to
limit high-throughput master flooding

AcceleratorAMBA AXI

1
3

5

2 6
7

4

1 CPU leaves data in the cache

Next-cycle notify to accelerator
to check and process data

Accelerator issues read - Data
may return from L1, L2, or from
main memory

Accelerator issues write of
result, L1 coherence ensured
and may be configured to
allocated into L2 cache

Accelerator raises event to CPU
to check for result data

CPU issues read, may hit in L2

2

3

4

5

6

7

7

IPSEC Acceleration Using I/O Coherency

Main Memory

SCU

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

IPSEC Header

Processor

Crypto/Authentication

AMBA AXI Interconnect

WAN GE I/F

FIFOs

DDR

Controller

DMA DMA

TDM PCI

ACP provides WAN sub-system
with IPSEC

LAN GE I/F

FIFOs

DMA

1. WAN port receives packets and allocates
packet into L2 coherently

2. Core looks at header, decides it is encrypted

and interrupts IPSEC block

3. IPSEC block processes the packet

and modifies coherent memory

4. ARM core performs NAT/QoS/Firewall and

sends packet through LAN port

AMBA AXI Interconnect

L2 Cache L2 Cache -Packet Buffer

8

ACP - Access to Shared Caches
Example: CRC engine for TCP packet forwarding on 64 byte packet

Using typical system latency, ignoring common processing overhead
Assumed writes are fully buffered

~31 cycles~272 cyclesTotal latency overhead

12 [from L2]Typical - 120Processor reads processes cache line

88Accelerator Write data (assuming buffered)

10
[read from L1/L2]

Typical - 120
[read data from off-chip]

Accelerator Reads data from cache line

1
[Send Event]

> 4
[write to mailbox GPIO]

Accelerator notified of data availability

020Flush cache to make data visible to accelerator

00Packet received and processed by CPU

ACP attached accelerator
with synchronous event

Traditional shared memory
with mailbox communication

Design style

Approximate Cycle CountsAlgorithm Stage

ACP solution is appropriate for cycle-offload accelerators
executing in 100’s of cycles with cache resident workloads.

For example in low latency situations required by audio echo cancelation

9

Summary

ARM Cortex-A9 has now exposed the MPCore coherence
technology to the wider SoC

Interface is known as “Accelerator Coherence Port (ACP)”

We’re hearing about ~25% reduction in memory transactions due to
reduction in cache flushing

Software no longer needs to be concerned with cache flush,
which can be particularly troublesome on a multicore

First devices expected be in sample around end of this year

Q1’08

