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Cortex-A9 MPCore™ Processor Structure

Tightly coupled multiple 
core configuration 
enables range of AMP 
and SMP configurations, 
configurable at boot time

Modified MESI coherency 
protocol for cache-to-
cache transfers and direct 
data intervention

Accelerator coherence 
port (ACP) enables 
acceleration engines and 
peripherals to share multi-
core optimized coherency 
design

Event bus across cores 
for fine grained 
communication within 
coherency domain
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Addressing system performance

System performance is not only defined by the processor
Speed/width and latency of DRAM  and processor system interface

Connectivity and efficiency interacting with system components

Offchip Bridged components

On chip system components

Tightly coupled components

Important to consider system
design, especially interaction
with other system components 
such as DMA and accelerators
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Traditional Accelerator SoC Integration

Analysis of traditional SoC accelerator SoC integration
Inefficient usage of CPU cache

Significant performance and power implications from data movement

High signalling latencies due to mailbox access and interrupt latencies
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1 CPU flushes data from cache to 
make visible to accelerator.

Writes to mailbox to indicate 
availability of data

Interrupt serviced by accelerator

Read data from memory

Writes result back to memory

Notifies availability of result data

CPU services interrupt

Reads accelerator result data
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Enhanced Accelerator SoC Integration

Cortex-A9 MPCore (1-4 CPUs)

MPCore Technology / SCU   

Memory 

CPU
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ARM MPCore: Accelerator Coherence Port (ACP)
Simplified software and reduces cache flush overheads
Accelerators gain access to CPU cache hierarchy, increasing system performance 
and reducing overall power
Uses AMBA® 3 AXI™ technology for compatibility with standard un-cached 
peripherals and accelerators
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limit high-throughput master flooding
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1 CPU leaves data in the cache

Next-cycle notify to accelerator 
to check and process data

Accelerator issues read - Data 
may return from L1, L2, or from 
main memory

Accelerator issues write of 
result, L1 coherence ensured 
and may be configured to 
allocated into L2 cache

Accelerator raises event to CPU 
to check for result data

CPU issues read, may hit in L2
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IPSEC Acceleration Using I/O Coherency
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ACP provides WAN sub-system 
with IPSEC

LAN GE I/F

FIFOs
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1. WAN port receives packets and allocates 
packet into L2 coherently

2. Core looks at header, decides it is encrypted 

and interrupts IPSEC block

3. IPSEC block processes the packet 

and modifies coherent memory

4. ARM core performs NAT/QoS/Firewall and 

sends packet through LAN port

AMBA AXI Interconnect

L2 Cache L2 Cache -Packet Buffer
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ACP - Access to Shared Caches 
Example: CRC engine for TCP packet forwarding on 64 byte packet

Using typical system latency, ignoring common processing overhead
Assumed writes are fully buffered

~31 cycles~272 cyclesTotal latency overhead

12  [from L2]Typical - 120Processor reads processes cache line

88Accelerator Write data (assuming buffered)
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[read from L1/L2]

Typical - 120
[read data from off-chip] 

Accelerator Reads data from cache line

1
[Send Event]

> 4
[write to mailbox GPIO]

Accelerator notified of data availability

020Flush cache to make data visible to accelerator

00Packet received and processed by CPU

ACP attached accelerator 
with synchronous event

Traditional shared memory 
with mailbox communication

Design style

Approximate Cycle CountsAlgorithm Stage

ACP solution is appropriate for cycle-offload accelerators 
executing in 100’s of cycles with cache resident workloads. 

For example in low latency situations required by audio echo cancelation 
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Summary

ARM Cortex-A9 has now exposed the MPCore coherence 
technology to the wider SoC

Interface is known as “Accelerator Coherence Port (ACP)”

We’re hearing about ~25% reduction in memory transactions due to 
reduction in cache flushing

Software no longer needs to be concerned with cache flush, 
which can be particularly troublesome on a multicore

First devices expected be in sample around end of this year

Q1’08


